# Boletim Técnico

AVALIAÇÃO DE EFICÁCIA ANTICOCCIDIANA E DESEMPENHO ZOOTÉCNICO EM FRANGOS DE CORTE DESAFIADOS COM CEPAS DE EIMERIAS DE CAMPO DO BRASIL UTILIZANDO DIFERENTES IONÓFOROS EM PROGRAMA FULL.

Código interno Phibro: Estudo BRT 134-184 (2023).

# Introdução

A coccidiose continua sendo um grande desafio para a avicultura. Os danos causados pelo parasitismo das coccídeas em nível intestinal resulta em perdas crônicas de desempenho zootécnico e consequente aumento dos custos de produção.

Uma das ferramentas utilizadas com frequência no controle da coccidiose é o uso de anticoccidianos ionóforos de forma preventiva na ração de frangos de corte. Os anticoccidianos ionóforos usados em avicultura são divididos em classes: ionóforos monovalentes (monensina, narasina e salinomicina), ionóforos glicosídicos (maduramicina e semduramicina) e ionóforo divalente (lasalocida). Weppelman et al. alertaram, já em 1977, que quando há redução da sensibilidade para um iónoforo de determinada classe, outros ativos pertencentes à mesma classe são também afetados e se tornam menos eficientes.

No Brasil, os ionóforos monovalentes são muito utilizados para a prevenção e controle da coccidiose, tanto em associação com a nicarbazina (anticoccidiano químico) na primeirafase de vida das aves e também como única estratégia de controle na segunda fase de vida das aves. Apesar dos programas de rotação praticados pelos produtores de frangos de corte regularmente trocarem as moléculas utilizadas, o que ocorre é o emprego de moléculas pertencentes a uma mesma classe, como é o caso dos monovalentes, sem "descanso" entre um programa anticoccidiano e outro.

Novas drogas anticoccidianas não tem sido desenvolvidas, por isso, salienta-se a importância de melhor planejar a rotação de anticoccidianos, especialmente os ionóforos, de modo a preservar sua eficácia anticoccidiana.

O primeiro objetivo deste trabalho foi comparar a eficácia de programas anticoccidianos com uso de ionóforos de classes distintas em programa full (1 a 42 dias), sendo avaliado Aviax® 5% - semduramicina (ionóforo glicosídico), monensina e salinomicina (ambos ionóforos monovalentes), em frangos de corte submetidos a desafio moderado de coccidiose (cepas de campo do Brasil) em relação a um grupo desafiado e não tratado (controle negativo).

### Materiais e métodos

Foram utilizados 1200 pintos machos Cobb em 4 tratamentos (Tabela 1) com 10 repetições em delineamento de blocos ao acaso. As avaliações do estudo ocorreram de 1-42 dias comparando dietas contendo Aviax® 5% (semduramicina 22,5 ppm), Monensina (120 ppm), Coxistac® 12% (Salinomicina 72 ppm) e um grupo controle infectado e não medicado. Todos os tratamentos e dietas receberam 10 ppm de virginiamicina via ração.

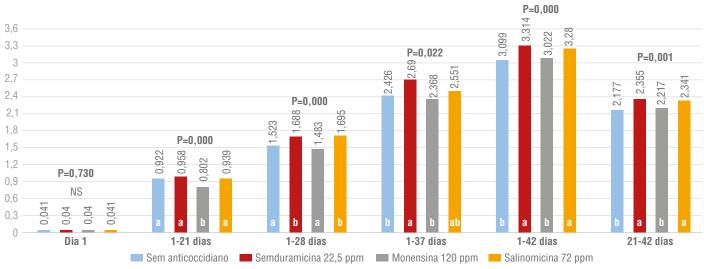
No 18° dia do estudo, as aves foram inoculadas através de gavagem com oocistos esporulados de *Eimeria acervulina* – 214.000 oocistos/ave, *Eimeria maxima* – 63.000 oocistos/ave e *Eimeria tenella* – 7.700 oocistos/ave, a fim de promover uma infecção moderada, sem ocasionar mortalidade.

No 24º dia do estudo (6 dias pós inoculação), três aves de cada repetição foram removidas, sendo eutanasiadas e submetidas ao escore de lesão de coccidiose de acordo com o método descrito por Johnson e Reid (1970).

Foi avaliado desempenho zootécnico nos dias 21, 28, 37 e 42 do estudo.

**Tabela 1.** Tratamentos avaliados no estudo BRT 134-184.

| Tratamentos                              | Inicial (1-21 dias)      | Crescimento (21-37 dias) | Final (37-42 dias)       |
|------------------------------------------|--------------------------|--------------------------|--------------------------|
| T1 - Controle desafiado<br>e não tratado | Sem anticoccidiano       | Sem anticoccidiano       | Sem anticoccidiano       |
| T2 - Desafiado + Aviax® 5%               | Aviax® 5% 450 g/ton      | Aviax® 5% 450 g/ton      | Aviax® 5% 450 g/ton      |
| (Semduramicina 22,5 ppm)                 | (Semduramicina 22,5 ppm) | (Semduramicina 22,5 ppm) | (Semduramicina 22,5 ppm) |
| T3 - Desafiado + Monensina 40%           | Monensina 40% 300 g/ton  | Monensina 40% 300 g/ton  | Monensina 40% 300 g/ton  |
| (Monensina 120 ppm)                      | (Monensina 120 ppm)      | (Monensina 120 ppm)      | (Monensina 120 ppm)      |
| T4 - Desafiado + Coxistac® 12%           | Coxistac® 12% 600 g/ton  | Coxistac® 12% 600 g/ton  | Coxistac® 12% 600 g/ton  |
| (Salinomicina 72 ppm)                    | (Salinomicina 72 ppm)    | (Salinomicina 72 ppm)    | (Salinomicina 72 ppm)    |




### Resultados e Discussões

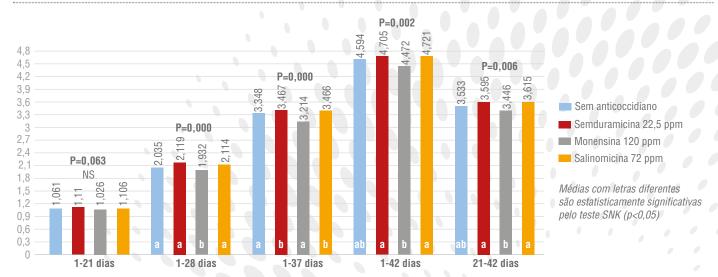
# 1. Desempenho zootécnico

Gráfico 1.

Ganho de peso (kg) nos períodos de 1-21 dias, 1-28 dias, 1-37 dias, 1-42 dias e 21-42 dias dos diferentes tratamentos.



Médias com letras diferentes são estatisticamente significativas pelo teste SNK (p<0,05)


Houve diferença significativa (p<0,05) no ganho de peso nas fases de 1 a 21 dias, 1 a 28, 1 a 37 dias, 1 a 42 dias e 21 a 42 dias de idade (Gráfico 1).

O tratamento com monensina 120 ppm teve pior ganho de peso quando comparado com os demais tratamentos já no período inicial (1 a 21 dias). Nos demais períodos avaliados, o tratamento com monensina 120 ppm se iguala

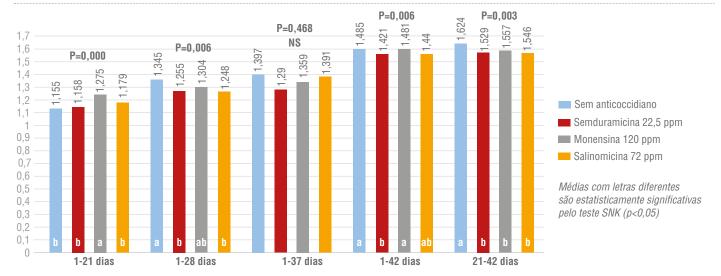
ao controle negativo com os piores ganhos de peso entre os tratamentos.

Nas fases de 1 a 21 dias, 1 a 28 dias, 1 a 37 dias, 1 a 42 dias e 21 a 42 dias os tratamentos com semduramicina 22,5 ppm e salinomicina 72 ppm foram semelhantes estatisticamente e obtiveram os melhores resultados de ganho de peso do estudo.

Gráfico 2. Consumo de ração (kg) nos períodos de 1-21 dias, 1-28 dias, 1-37 dias, 1-42 dias e 21-42 dias dos diferentes tratamentos.



Não houve diferença no consumo de ração (Gráfico 2) entre 🔻 ganho de peso com monensina mesmo na dose aprovada os tratamentos na fase de 1 a 21 dias. Numericamente, o controle negativo e o tratamento com monensina mostraram os menores consumo de ração neste período.


Nos períodos de 1 a 28 dias e 1 a 37 dias o tratamento com monensina 120 ppm teve menor consumo de ração quando comparado aos demais tratamentos do estudo. Harms et al, 1989 mostra em seu estudo redução de consumo e menor

120 ppm quando comparado com salinomicina.

Ao avaliarmos o período de 1 a 42 dias e 21 a 42 dias, os tratamentos que receberam semduramicina 22,5 ppm e salinomicina 72 ppm obtiveram maior consumo de ração quando comparado com o tratamento que recebeu monensina 120 ppm, porém não diferindo estatisticamente do tratamento sem anticoccidiano (controle negativo).

#### Gráfico 3.

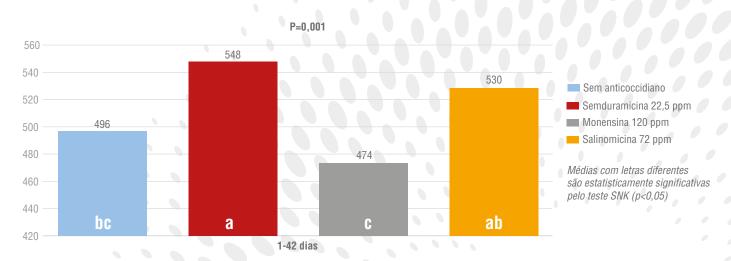
Conversão alimentar nos períodos de 1-21 dias, 1-28 dias, 1-37 dias, 1-42 dias e 21-42 dias dos diferentes tratamentos.



No período de 1 a 21 dias o tratamento com monensina 120 ppm obteve pior conversão alimentar quando comparado aos demais tratamentos (Gráfico 3).

Ao avaliarmos o período de 1 a 28 dias, os tratamentos que receberam semduramicina 22,5 ppm e salinomicina 72 ppm obtiveram melhor resultado de conversão alimentar quando comparado ao grupo sem anticoccidiano, mas não diferente estatisticamente do tratamento que recebeu monensina 120 ppm.

No período de 1 a 37 dias não se observou diferença estatística entre os tratamentos. Mas numericamente o tratamento com semduramicina 22,5 ppm obteve melhor conversão alimentar (69 gramas de ração a menos que o tratamento com monensina 120 ppm).


No período de 1 a 42 dias o tratamento com semduramicina

22,5 ppm obteve melhor resultado de conversão alimentar quando comparada com o tratamento com monensina 120 ppm e o grupo sem anticcocidiano (p<0,05), porém sem diferença estatística quando comparado ao tratamento com salinomicina 72 ppm.

Na avaliação de 21 a 42 dias os tratamentos com anticoccidianos não diferiram entre si, mas diferiram estatisticamente do tratamento sem anticoccidiano, este com pior resultado de conversão alimentar.

A conversão alimentar é a razão entre consumo de ração e ganho de peso. Como mostrado nos Gráficos 1 e 2, o tratamento com monensina 120 ppm afetou esses parâmetros quando comparado aos demais ionóforos testados.

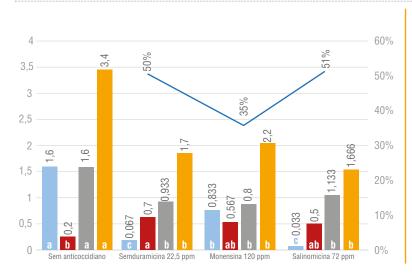
**Gráfico 4.**Índice de eficiência produtiva de 1 a 42 dias dos diferentes tratamentos



O índice de eficiência produtiva (IEP) (Gráfico 4) leva em consideração o ganho de peso, viabilidade e a conversão alimentar, de acordo com a seguinte fórmula:

IEP= Ganho de peso diário (kg) x Viabilidade (%) / Conversão alimentar x 100.

No presente estudo, o tratamento com semduramicina 22,5 ppm obteve melhor resultado de IEP quando comparado ao tratamento de monensina 120 ppm e sem anticoccidiano, mas não diferiu estatisticamente do tratamento com salinomicina 72 ppm.




### Resultados e Discussões

### 2. Escore de lesões de coccidiose

Avaliando escore de lesão macroscópico para *E. acervulina* (Gráfico 5) é possível observar que os tratamentos que receberam semduramicina 22,5 ppm e salinimocina 72 ppm obtiveram menor escore de lesão quando comparado ao tratamento de monensina 120 ppm e tratamento sem anticoccidiano (p<0,05).

**Gráfico 5.**Escore de lesão macroscópico para *E. acervulina*, *E. maxima* e *E. tenella* aos 24 dias de idade de frangos de corte.



|                                   | Sem anticoccidiano         | Semduramicina 22,5 ppm    |
|-----------------------------------|----------------------------|---------------------------|
| Eimeria acervulina                | 1,6                        | 0,067                     |
| Eimeria maxima                    | 0,2                        | 0,7                       |
| Eimeria tenella                   | 1,6                        | 0,933                     |
| TMLS                              | 3,4                        | 1,7                       |
| % redução em relação controle     | -                          | 50%                       |
|                                   |                            |                           |
|                                   | Monensina 120 ppm          | Salinomicina 72 ppm       |
| Eimeria acervulina                | Monensina 120 ppm<br>0,833 | Salinomicina 72 ppm 0,033 |
| Eimeria acervulina Eimeria maxima |                            |                           |
|                                   | 0,833                      | 0,033                     |
| Eimeria maxima                    | 0,833<br>0,567             | 0,033                     |

Médias com letras diferentes são estatisticamente significativas pelo teste SNK (p<0,05)

Ao avaliar *E. maxima* e *E. tenella*, os tratamentos com anticoccidianos não diferiram entre si.

Foi calculado o indicador TMLS (*Total Mean Lesion Score*) ou soma dos escores totais de coccidiose para cada tratamento e após isso verificado a redução do TMLS para

cada tratamento do estudo em relação ao tratamento sem anticoccidiano (controle negativo). O que pode ser verificado, ainda que sem diferença estatística, que as maiores reduções de coccidiose ocorreram para os tratamentos com semduramicina 22,5 ppm e salinomicina 72 ppm.

# Considerações finais

Com os dados deste estudo observamos diferenças significativas (p<0,05) em ganho de peso e consumo de ração entre os tratamentos do estudo. Os tratamentos com Aviax® 5% - semduramicina 22,5 ppm (ionóforo glicosídico) e salinomicina 72 ppm (ionóforo monovalente) foram melhores nestes parâmetros quando comparados com monensina 120 ppm (ionóforo monovalente).

Foi possível constatar efeitos negativos da monensina sobre o consumo de ração e ganho de peso de frangos de corte desafiados para coccidiose na dose aprovada para uso — 120 ppm, o que corrobora os dados de Harms et al. 1989. O uso de Aviax® 5% - semduramicina 22,5 ppm (ionóforo glicosídico) e da salinomicina 72 ppm (ionóforo monovalente) se mostraram alternativas eficazes para rotação de ionóforos nos programas anticoccidianos, com resultados superiores de desempenho em frangos de corte e controle da coccidiose quando comparados com monensina 120 ppm.

# Referências Bibliográficas

JOHNSON, J.; REID, W.M. Anticoccidial drugs: lesion scoring techniques in battery and floor-pen experiments with chickens. Exp. Parasitol. Aug, 28 (1):30-6. 1970.

HARMS, R.H., RUIZ, N., BURESH, R.E. Influence of Monensin and Salinomycin on the Performance of Broiler Chicks. Poultry Science 68: 86-88. 1989.

WEPPELMAN, R. M.; OLSON, G.; SMITH, D.A.; TAMAS, T. and VAN INDERSTINE, A. Comparison of anticoccidial efficacy, resistance and tolerance of narasin, monensin, and lasalocid in chicken battery trials. Poultry Science 56:1550. 1977.